Effects of CYP3A4 inhibition by diltiazem on pharmacokinetics and dynamics of diazepam in relation to CYP2C19 genotype status.

نویسندگان

  • K Kosuge
  • Y Jun
  • H Watanabe
  • M Kimura
  • M Nishimoto
  • T Ishizaki
  • K Ohashi
چکیده

Diazepam is metabolized by CYP2C19 and CYP3A4 in the liver. CYP2C19 shows genetic polymorphism associated with the poor metabolizer (PM) and extensive metabolizer (EM) phenotypes. The aim of this study was to assess the effect of diltiazem, a CYP3A4 inhibitor, on pharmacokinetics and dynamics of diazepam in relation to CYP2C19 genotype status. Thirteen healthy volunteers (eight EMs and five PMs) were given placebo or diltiazem (200 mg) orally for 3 days before and for 7 days after the oral 2-mg dose of diazepam in a double-blind, randomized, crossover manner. The pharmacokinetics and pharmacodynamics of diazepam were assessed with and without diltiazem. Plasma concentrations and area under the plasma concentration-time curves (AUCs) of diazepam and N-desmethyldiazepam were significantly greater in the PM compared with the EM group during the placebo phase. Diltiazem significantly increased AUC and prolonged elimination t(1/2) of diazepam in both the PM and EM groups. These pharmacokinetic changes, however, caused no significant difference in the pharmacodynamics between the two trial phases. Diltiazem affects the pharmacokinetics of diazepam in the PM and EM groups of CYP2C19. Inhibition of CYP3A4 by a concomitant substrate drug like diltiazem may cause a pharmacokinetic interaction with diazepam irrespective of CYP2C19 genotype status, but whether this interaction would reflect a pharmacodynamic change of diazepam remains unconfirmed by our study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of lentinan effects on cytochrome P450 activity in rats by a cocktail method

Objective(s): In this study, a cocktail of probe drugs was used to assess whether lentinan could influence the activities of rat enzymes CYP3A4, CYP2D6, CYP1A2, CYP2C19, and CYP2C9 in vivo. Materials and Methods: Fourteen days after intraperitoneal injection of lentinan, rats were given an oral dose of a cocktail solution containing phenacetin, tolbutamide, omeprazole, metoprolol, and midazolam...

متن کامل

Genotype and allele frequency of CYP2C19*17 in a healthy Iranian population

  Background: Cytochrome P450 2C19 (CYP2C19) is important in metabolism of wide range of drugs. CYP2C19*17 is a novel variant allele which increases gene transcription and therefore results in ultra-rapid metabolizer phenotype (URM). Distribution of this variant allele has not been well studied worldwide. The aim of present study was to investigate allele and genotype frequencies of CYP2C19*17 ...

متن کامل

Different contribution of CYP2C19 in the in vitro metabolism of three proton pump inhibitors.

A series of clinical studies on the cytochrome P450 2C19 (CYP2C19) genotype and the pharmacokinetics and pharmacodynamics of three proton pump inhibitors (PPIs), omeprazole, lansoprazole and rabeprazole, have been conducted to establish the individualized pharmacotherapy based on the CYP2C19 genotyping, and in the present study, the CYP2C19 genotype-dependency was more pronounced for omeprazole...

متن کامل

Cytochrome P450 3A4 is the major enzyme involved in the metabolism of the substance P receptor antagonist aprepitant.

The contribution of human cytochrome P450 (P450) isoforms to the metabolism of aprepitant in humans was investigated using recombinant P450s and inhibition studies. In addition, aprepitant was evaluated as an inhibitor of human P450s. Metabolism of aprepitant by microsomes prepared from baculovirus-expressed human P450s was observed only when CYP1A2, CYP2C19, or CYP3A4 was present in the expres...

متن کامل

Automated definition of the enzymology of drug oxidation by the major human drug metabolizing cytochrome P450s.

A fully automated assay to determine the enzymology of drug oxidation by the major human hepatic cytochrome P450s (CYPs; CYP1A2, -2C9, -2C19, -2D6, and -3A4) coexpressed functionally in Escherichia coli with human NADPH-P450 reductase has been developed and validated. Ten prototypic substrates were chosen for which clearance was primarily CYP-dependent, and the activities of these five major CY...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 29 10  شماره 

صفحات  -

تاریخ انتشار 2001